

#### Coherent Operations in a Microfabricated Ion Trap

Joseph Thom,<sup>1,2</sup> Guido Wilpers,<sup>1</sup> Erling Riis,<sup>2</sup> and Alastair G. Sinclair<sup>1</sup>

1) National Physical Laboratory, Teddington 2) University of Strathclyde, Glasgow joseph.thom@npl.co.uk QuAMP 2013 11/09/2013





## **Introduction**



- Trap strings of individual atomic ions using a combination of static and oscillating electric fields
- Applications in quantum information and quantum metrology
- Ion trap constructed from a monolithic semiconductor chip
- Laser pulses interact with electronic levels of ion





## **Introduction**



<u>Motivation:</u> Accurate and agile control of laser fields required in ion trapping, neutral atom manipulation, quantum simulation, atom interferometry and CQED based single photon generation <u>Aim:</u> Develop highly agile laser source with accurate control over optical parameters

#### Outline:

- Introduction to experiment and coherent control
- Requirements in terms of phase, amplitude and frequency agility
- Laser setup and full characterisation





**Experimental System** 

422 nm: Laser cooling/state detection

1033 nm: Repumper to enable closed cooling cycle



#### **Experimental System**





674 nm: Qubit transition laser/ resolved sideband cooling

1033 nm: Clearout /quencher



# **Coherent Control of Qubit State**



Quantum computers and optical atomic clocks require coherent control

 $\rightarrow$  confinement in the Lamb-Dicke regime....

$$\eta = \frac{2\pi}{\lambda} \cos \theta \sqrt{\frac{\hbar}{2M\omega}} \qquad \eta^2 \sqrt{2\overline{n} + 1} \ll 1$$

...and laser with long coherence time (i.e. narrow linewidth)

• Need to be able to create arbitrary superpositions  $|D| = c_1 |S| + c_2 |D|$   $|\psi\rangle = c_1 |S| + c_2 |D|$  5 Solution of the set o

For full control over final state , need accurate and fast switching of optical **phase**  $\phi$ , **amplitude E** and **frequency** v. *J Thom et al, Optics Express,* **21**, 18712 (2013)

























- Errors in phase, amplitude and detuning all lead to errors in final position of Bloch vector → <u>Decreased gate fidelities</u>
- Realistic sequences extend to ~ 30 pulses (e.g. teleportation)
   → require accurate and agile switching of parameters



• Coherent excitation spectrum of a single ion in the microfabricated trap



- Quantum logic operations require sideband operations
- High power required to drive sidebands due to reduced coupling strength

 $\rightarrow$ Shape optical pulses in amplitude to minimise off resonant excitation

 $\rightarrow$  Minimise decoherence, maximise fidelity

## **Bichromatic Operation for Entangling Gate**



- We aim to create entanglement in our system between two or more ions → Key resource in quantum computing and quantum metrology
- Mølmer-Sørensen gate -Used to create entangled states with 99.3% fidelity (Innsbruck 2008)



→Require bichromatic operation

# **Agile Slave Laser System: Optics**



- Injection lock to master laser
   → Narrow linewidth for long
   coherence times
- Three AOM passes and second fibre
   → high extinction ≈ 5 x10<sup>11</sup> to
   maintain qubit coherence between
   pulses







# **Phase Control**



- Accurate phase control is a requirement in some quantum logic gates and in interrogation schemes for atomic clocks
- Transfer phase agility of DDS to laser light through acousto-optic modulation
- Detect via beat note between AOM shifted and master light



- $\pi$  phase shift
- Fits either side to calculate phase shift value

### **Phase Control**



• Measure the phase change over the full range of values from  $0 < \delta \phi < 2\pi$ .



#### **Phase Control - Fine Resolution**



Measure the phase change over a narrow range 2.20-Measured Phase Step (rad) III 2.15 2.10 Gradient =1.000(5)• 2.05 -2.00-2.00 2.05 2.10 2.15 2.20

Programmed Phase Step (rad)

## **Amplitude Control**



- Need amplitude control E(t) for fine control over ion state
- However AOM response to applied RF field is non-linear
- Account for this non-linearity using automated calibration routine



## **Amplitude Control**



- Need amplitude control E(t) for fine control over ion state
- However AOM response to applied RF field is non-linear
- Account for this non-linearity using automated calibration routine



# **Amplitude Shaped Pulse Generation**



• After calibration, can generate Blackman pulses of duration 2*T* with the form the form



# **Operation over six orders of magnitude in <u>duration</u>**





#### **Power Spectrum of Optical Pulses**



Calculated the Fourier spectrum of measured pulse shapes



• Measured Blackman pulse of 500 µs duration

#### **Power Spectrum of Optical Pulses**



Calculated the Fourier spectrum of measured pulse shapes



- Measured Blackman pulse of 500 µs duration
- Measured square pulse of the same integrated power

### **Power Spectrum of Optical Pulses**



Calculated the Fourier spectrum of measured pulse shapes



- Measured Blackman pulse of 500 µs duration
- Measured square pulse of the same integrated power
- Theoretical Blackman pulse of 500 µs duration

#### **Bichromatic Operation**



Light field that interacts with two sidebands of center of mass mode of two ions.





- Use single pass AOM to create light field with two optical frequencies separated by 4 MHz
- 30 ns rise time

## **Microfabricated Ion Trap**



- <u>**3-D electrode geometry**</u> produces deep trapping potential.
- <u>Unity aspect ratio</u> design for highly efficient trap.
- <u>Monolithic</u> production process using conventional semiconductor fabrication techniques



Demonstration: G. Wilpers et al, Nature Nanotechnology, 7(9), 572 (2012)UHV Packaging: G. Wilpers et al, Applied Physics B, 111(1), 21 (2013)Fabrication: P. See et al, JMEMS, 10.1109/JMEMS.2013.2262573 (2013)

#### **Summary**



- Developed agile laser system J Thom et al, Optics Express, 21, 18712 (2013)
- Characterised full phase, amplitude and frequency agility
- Arbitrary pulses over six orders of magnitude in duration

#### **Outlook**

Coherent spectroscopy on ions:

- Demonstrate laser agility on ions
- Characterisation of decoherence of superpositions during ion transport
- Full implementation and characterisation of entangling gate